
www.manaraa.com

1

A Distributed Fault/Intrusion-Tolerant Sensor Data
Storage Scheme Based on Network Coding and

Homomorphic Fingerprinting
Rongfei Zeng, Yixin Jiang, Chuang Lin, Senior Member, IEEE,

Yanfei Fan, and Xuemin (Sherman) Shen, Fellow, IEEE

Abstract—Recently, distributed data storage has gained in-
creasing popularity for reliable access to data through redun-
dancy spread over unreliable nodes in wireless sensor networks
(WSNs). However, without any protection to guarantee the data
integrity and availability, the reliable data storage can not be
achieved since sensor nodes are prone to various failures, and
attackers may compromise sensor nodes to pollute or destroy the
stored data. Therefore, how to design a robust sensor data storage
scheme to efficiently guarantee the data integrity and availability
becomes a critical issue for distributed sensor storage networks.
In this paper, we propose a distributed fault/intrusion-tolerant
data storage scheme based on network coding and homomorphic
fingerprinting in volatile WSNs environments. For high data
availability, the proposed scheme uses network coding to encode
the source data and distribute encoded fragments with original
data pieces. With secure, compact, and efficient homomorphic
fingerprinting, our scheme can fast locate incorrect fragments
and then initialize data maintenance. Extensive theoretical anal-
ysis and simulative results demonstrate the efficacy and efficiency
of the proposed scheme.

Index Terms—Distributed sensor data storage, network coding,
homomorphic fingerprinting, data maintenance.

I. INTRODUCTION

Distributed sensor data storage involves storing data reliably

on multiple sensor nodes instead of a single source node,

so that the original data can be further accessible to any

authorized data collectors in wireless sensor networks (WSNs).

Compared with the centralized data storage, distributed data

storage is of special benefit for the reliable data management

in WSNs, where individual sensors are vulnerable to failures

and various attacks. Nowadays, distributed sensor data storage

is universally applied to various scenarios. For instance, sensor

networks are deployed in the remote environments where

sensing nodes take measurements and store data on storage

nodes over a long period of time. Any authorized data collector

may appear at any location to retrieve the useful data from

storage nodes [1], [2].

Despite the benefits of reliable data management, distributed

data storage is susceptible to various threats to the data

R. Zeng and C. Lin are with the Department of Computer Science and Tech-
nology, Tsinghua University, Beijing, 100084, P. R. China. Email:{zengrf,
clin}@csnet1.cs.tsinghua.edu.cn.

Y. Jiang is with the EPRI, China Southern Power Grid Co. Ltd., Guangzhou,
510080, P. R. China. Email:yixin.tsinghua@gmail.com.

Y. Fan and X. Shen are with the Department of Electrical and Computer
Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
Email:{yfan, xshen}bbcr.uwaterloo.ca.

Fig. 1. Sensor data storage with integrity checking and data maintenance

availability and integrity in WSNs. In practical, individual

nodes are prone to random Byzantine failures, which mean

some nodes may behave erroneously or fail to behave con-

sistently [1], [6], [31]. In addition, malicious sensors may

deliberately pollute or destroy the stored data by initiating

various attacks (e.g., pollution attacks). All these phenomena

result in the corruption of data availability and integrity,

which correspondingly causes different data to be recovered

from different subsets of fragments. Furthermore, if corrupted

fragments are not located and updated, the limited resources,

such as memory and energy, are abused to store these incorrect

fragments or perform computations on them.

Therefore, we should provide both the data availability and

integrity guarantees for sensor data storage in WSNs. For

the data integrity, Wang et al. argue that dynamic integrity

verification should be utilized to assure data correctness over

the period of storage [1]. Corrupted fragments need to be

identified by dynamic integrity checking, and then data main-

tenance is performed to replace corrupted fragments for the fu-

ture data reconstruction. On the other hand, dynamic integrity

verification becomes meaningless without data maintenance.

Only if dynamic integrity verification and data maintenance

are both provided, can data collectors successfully obtain the

stored data. In Fig. 1, we illustrate the integrity verification and

data maintenance for data availability and integrity guarantees

in sensor data storage. A source node generates four fragments

from three original data pieces (or called source data pieces)

using coding techniques and then stores encoded fragments

at different storages nodes. During the lifetime of fragments,

integrity checking is randomly performed to assure the data in-

Digital Object Indentifier 10.1109/TPDS.2011.294 1045-9219/11/$26.00 © 2011 IEEE

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

2

tegrity and locate corrupted fragments. In this example, D4 is

identified to be incorrect and then updated with {D1, D2, S3},

as depicted by the dotted line. Data collectors can recover the

original data using any three of {D1, D2, D3, D5}.

We first examine the existing data storage schemes. Most

previous works focus on data distribution in P2P and wireless

networks. For instance, erasure codes (e.g., Reed-Solomon

codes [10]), fountain codes (e.g., LT codes [7]), growth codes

[5], and priority linear codes [11] have been proposed in the re-

cent years. In addition, some schemes are proposed to provide

the integrity guarantee for network coding or erasure codes

[26], [27], [29], [30], but the data maintenance issue is not

addressed in these schemes. There are also some secure data

storage schemes which include the secure data access approach

with polynomial-key management, the adaptive polynomial-

based data storage scheme, etc. [12]-[19], [31]. However,

none of them achieves the requirements of data integrity,

high availability, and efficiency at the same time. Recently,

Wang et al. [1] propose a dependable and secure sensor data

storage scheme with erasure codes and algebraic signature.

In summary, distributed sensor data storage with both data

integrity and availability guarantees has not been studied so

far.

To tackle the above problem, we propose a distributed

fault/intrusion-tolerant sensor data storage scheme based on

network coding and homomorphic fingerprint. Unlike the tra-

ditional store-and-forward mechanism, network coding (NC)

[23] allows intermediate nodes to actively code/mix the input

packets. This novel information dissemination technique can

achieve potential throughput improvement [24], transmission

energy minimization [25], delay reduction [21] as well as

robustness enhancement [20] in communication networks. Ho-

momorphic fingerprintings proposed for the integrity checking

can preserve the algebraic structure of network coding and

allow verifiers to rapidly locate corrupted fragments. It has

been demonstrated to be secure, compact, and efficient with

low bandwidth and computational overheads [8]. Our scheme

relies on network coding to encode the original data and

distribute encoded fragments with original data pieces and

homomorphic fingerprintings to storage nodes. Homomorphic

fingerprintings are used to fast identify incorrect fragments

and initialize data maintenance. During the data maintenance

phase, network coding is also applied to generate alternative

fragments using original data pieces and encoded fragments

to guarantee the data availability.

The main contributions of this paper are two-fold: 1) To

the best of our knowledge, this is the first research work to

provide both data integrity assurance and availability guarantee

for distributed data storage in WSNs. The data availability

and integrity guarantees are achieved with network coding

and homomorphic fingerprinting. Network coding provides

an efficient and robust paradigm for data distribution and

maintenance with low bandwidth and computational over-

heads, and homomorphic fingerprinting offers an efficient

integrity verification mechanism to detect and filter polluted

fragments; and 2) Extensive security analysis and performance

evaluations demonstrate that our scheme provides an efficient

fault/intrusion-tolerant approach for distributed data storage in

the volatile WSNs environments, meaning that the proposed

scheme is lightweight and resilient against Byzantine failures

and malicious node compromising attacks.

The remainder of the paper is organized as follows: Section

II introduces the system model, design goals, and preliminary

techniques adopted in this paper. In Section III, we propose a

distributed sensor data storage scheme with the data integrity

and availability guarantees. Security analysis and performance

evaluations are presented in Section IV. Section V surveys

relate work, followed by the conclusions in Section VI.

II. SYSTEM MODEL, DESIGN GOALS AND PRELIMINARIES

A. System Model

We consider the typical wireless data storage networks

consisting of a relatively large number of sensor nodes,

which are deployed strategically in the area of interest. Some

sensors termed as source nodes can sense the environments,

generate data blocks, and distribute them to the local nodes

called storage nodes which will store the data for a period

of time. The delay-sensitive scenarios are not the focus of

this paper. Without loss of generality, we assume that sensor

nodes are equipped with sufficient memory to store the sensed

data. However, due to the constrained resources, sensors are

assumed to have limited power supply and computational

capability. In addition, sensor nodes are not tamper-proof,

while some basic security mechanisms such as pairwise key

and group key establishments [31] are already in place. Finally,

each sensor is assumed to have a unique global ID.

B. Threat Model

Regarding the data availability and integrity, we consider

a general and powerful threat model from two aspects: ran-

dom Byzantine failures and malicious attacks. For Byzantine

failures, some nodes may behave erroneously and fail to

preserve the data consistency in WSNs. Moreover, a sensor

node may be seeped away by ocean current or isolated by

other catastrophic surroundings, thus some fragments may be

lost or corrupted forever. For malicious attacks, hostile nodes

always attempt to compromise and control as many critical

storage nodes as possible. Then, the adversary can pollute all

the data stored at the compromised node and monitor all its

incoming and outgoing messages. In addition, attackers can

further make use of compromised nodes to launch a variety of

attacks. Note that if a sensor node were fully controlled by an

adversary, it can successfully pass the integrity verification.

There is no method to detect such attack with the existing

schemes [1]. Finally, we assume that all the failures occur

with moderate rate [1], [31].

C. Design Goals

The overall design goal is to enable authorized data collec-

tors to correctly recover the original data in distributed sensor

data storage. Specifically, we want to achieve the following

subgoals: 1) Data Availability: Distributed data storage in-

volves storing data reliably and enabling data collectors to

retrieve the original information at any time, especially under

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

3

Fig. 2. Network coding at intermediate nodes

the circumstance of random failures and various attacks. Thus,

assuring high data availability is one of the most essential and

critical requirements for distributed data storage in WSNs; 2)

Data Integrity: The integrity of fragments must be guaranteed

over the period of storage. Otherwise, data collectors cannot

correctly reconstruct the original data; and 3) Efficiency: The

distributed sensor data storage scheme should be efficient

in computational and communication overheads so that it is

suitable for the inherent resource-constrained nature of WSNs.

D. Preliminaries

Network Coding: Network coding [20], [21] provides an

efficient communication paradigm which allows intermediate

nodes to mix input messages and make output messages be

the mixture of input ones. As shown in Fig. 2, the symbol

y(e) ∈ F2q carried on the outgoing edge e of node v can

be computed as a linear combination of the symbols y(e′)
on the incoming edge e′, i.e., y(e) =

∑
e′ βe′(e)y(e

′), where

β(e) = [βe′(e)] is called the local encoding vector (LEV),

and the element βe′(e) are randomly chosen from F2q (e.g.,

q=8 or 16). By induction, we can denote y(e) as a linear

combination of the source symbols x1, · · · , xh, i.e., y(e) =∑h
i=1 gi(e)xi, where the vector g(e) = [g1(e), · · · , gh(e)] is

called the global encoding vector (GEV). When a sink node

t receives h symbols y(e1), · · · , y(eh), these symbols can be

expressed in terms of source symbols as⎡
⎢⎣
y(e1)

...

y(eh)

⎤
⎥⎦=

⎡
⎢⎣
g1(e1) . . . gh(e1)

...
. . .

...

g1(eh) · · · gh(eh)

⎤
⎥⎦
⎡
⎢⎣

x1

...

xh

⎤
⎥⎦=G

⎡
⎢⎣
x1

...

xh

⎤
⎥⎦ , (1)

where G is called the global encoding matrix (GEM), and

the i-th row of the matrix G is the GEV associated with

y(ei). Sink node t can further recover the h source symbols

by solving these equations using Gaussian eliminations.

Homomorphic Fingerprinting: Homomorphic fingerprint-

ing is first proposed by Hendricks et al. in [8]. Among various

fingerprinting functions, division fingerprinting is widely ap-

plied to provide integrity checking due to its fast implementa-

tions. Let K be the set of fingerprinting key, the size of which

equals the number of monic irreducible polynomials of degree

γ, and let P2q : K → F2q [x] be a deterministic algorithm

that outputs monic irreducible polynomials of prime degree

γ with their coefficients in F2q . The polynomials are chosen

with probabilities taken over the choice of input r ∈ K. Then,

a fingerprinting function fp(r, d) : K×F
δ
2q → F

γ
2q can be de-

fined as fp(r, d) : p(x) ← P2q (r); return (d(x) mod p(x)).
There are three important properties for division fingerprint-

ing.

[Property 1] A division fingerprinting function fp(r, d) :
K × F

δ
2q → F

γ
2q satisfies

max Pr{fp(r, d) = fp(r, d′) : r ← K} ≤ ε, (2)

where d, d′ ∈ F
δ
2q , d �= d′ and ε ≈ δ/2qγ . In other words, the

probability that the fingerprintings of two different fragments

collide is at most ε, with the random selection of r.

[Property 2] A division fingerprinting function fp(r, d) :
K × F

δ
2q → F

γ
2q is homomorphic, i.e.,

fp(r, d) + fp(r, d′) = fp(r, d+ d′), (3)

and

b · fp(r, d) = fp(r, b · d), (4)

which can be achieved for any r ∈ K, d, d′ ∈ F
δ
2q , and b ∈

F2q .

[Property 3] Let encode be a linear network coding with

coefficients bij ∈ F2q (1 ≤ i ≤ n, 1 ≤ j ≤ m), and then we

can have [d1, d2, · · · , dn] ← encode[s1, s2, · · · , sm]. For the

division fingerprinting function fp(r, d) : K×F
δ
2q → F

γ
2q , the

following equation holds:

fp(r, di) = encode[fp(r, s1), fp(r, s2), · · · , fp(r, sm)]. (5)

E. Notations

In TABLE I, we present the symbols used in this paper.

TABLE I
NOTATIONS OF THIS PAPER

Notations Descriptions

v, w Regular sensor nodes
NBv The one-hop neighbor set of node v
Si The i-th partition of source data

Vi, Ei Vi is an encoding vector and Ei is the encoded block
{·}k The encrypted data with key k
seq Sequence number for integrity checking and retrieval
rj The key of homomorphic fingerprinting

Pi Pi is a signature vector stored at a sensor node
KUV The key shared between users and the data source
kr,Kgr kr is a random session key and Kgr is a group key
h(·) The public hash function

III. THE PROPOSED SENSOR DATA STORAGE SCHEME

In this section, we propose a distributed fault/intrusion-

tolerant data storage scheme based on network coding and ho-

momorphic fingerprinting to guarantee both the data integrity

and availability in WSNs.

A. The Basic Framework

For sensor data storage networks, we first propose a basic

framework which consists of four phases:

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

4

1) Data distribution: After generating the original data, the

source node disperses data blocks to the storage nodes in the

data distribution phase. It is noteworthy that the delivered data

blocks may be replicas or encoded fragments using various

coding techniques (e.g., erasure codes and network coding).

Moreover, some additional information might be delivered as

well for the data availability and integrity guarantees.

2) Integrity checking: Any storage node could initialize

dynamic integrity verification at any time, aiming to identify

corrupted fragments from all data blocks and provide the

integrity assurance over the lifetime of data blocks.

3) Data maintenance: Once a fragment is identified to be

incorrect, the data maintenance must be performed to replace

corrupted fragments with correct ones for the future data

recovery.

4) Data recovery: When an authorized data collector needs

to retrieve the original information, it is required to collect

enough fragments to reconstruct the original data.

B. Data Distribution

In this subsection, network coding is used to encode the

original data and distribute encoded fragments to storage

nodes. To provide data integrity and availability guarantees,

homomorphic fingerprintings and original data pieces are

delivered with encoded fragments as well.

We first introduce two essential data structures: flagi and

listi . Let flagi be the number of times that the original data

piece hold by node i is stored by other storage nodes. listi,
initially set to NULL, records the ID of storage node which

contains the same original data piece with node i. Then, the

procedure of our data distribution can be described as follows:

1) Source node v calculates the keyed hash of data and

encrypts <data, kr, h(data, kr)> with key KUV , i.e., DATA=
{data, h(data, kr), kr}KUV

, where KUV is shared between

the source node v and authorized data collectors. It can be seen

that the confidentiality of data is guaranteed by the encryption.

2) Let DATA=< S1, S2, · · · , Sm >, and node v encodes

DATA into n(m ≤ n ≤ 2m) fragments with random linear

network coding as⎡
⎢⎣
a11 . . . a1m

...
. . .

...

an1 · · · anm

⎤
⎥⎦×

⎡
⎢⎣
S1

...

Sm

⎤
⎥⎦=

⎡
⎢⎣
E1

...

En

⎤
⎥⎦ ,

Vi = [ai1, ai2, · · · , aim], Di = [Vi, Ei], (6)

where the elements of Vi are randomly picked from F2q .

3) The source node v randomly selects n local storage

nodes to form the set NBv . For each neighbor w ∈ NBv ,

node v randomly picks the key ri from F2q and computes the

homomorphic fingerprinting of each original data piece as

fp(ri, Sj) : p(x) ← P2q (ri); return(Sj(x) mod p(x)), (7)

where j = 1, · · · ,m and i, k = 1, · · · , n. Then, we can get

the fingerprinting vector

Pi = [fp(ri, S1), fp(ri, S2), · · · , fp(ri, Sm)] (8)

4) Let a = �n/2	 . Node v randomly selects Sz1, Sz2, · · · ,
Sza from the original data blocks {S1, S2, · · · , Sm}, while

other data blocks Sj , j /∈ {z1, z2, · · · , za} are deleted. Then,

node v randomly assigns Sk, k = z1, z2, · · · , za to storage

nodes, guaranteeing that each original piece cannot be deliv-

ered to more than two storage nodes. In addition, node v needs

to set flagi and listi according to the definitions.

5) Node v distributes {v, seq,Di, ri, Pi, Szi, f lagi, listi}
to each neighbor wi ∈ NBv and then deletes all the data

associated with seq.

In summary, the original data is divided into m blocks

which are further encoded into n fragments using network

coding. Subsequently, node v distributes each fragment with

homomorphic fingerprintings and an original data piece to a

storage node for the future data retrieve.

C. Integrity Verification

Fast fingerprinting verification can be initiated by any

storage node at any time. Suppose that node wi wants to

verify the integrity of encoded fragments. It first broadcasts a

challenge {wi, seq, ri}Kgr . On receiving the challenge, each

storage node wj ∈ NBv computes the fingerprinting of Ej

associated with seq and then responds an acknowledgement

{wj , seq, fp(ri, Ej), Vj}Kgr . Once all the responses are ob-

tained, the verifier wi constructs a new vector as

[c1, c2, · · · , cm] = b1V1 + b2V2 + · · ·+ bnVn, (9)

where bj , j = 1, · · · , n are randomly picked from F2q . Node

wi can verify the integrity of all the encoded fragments in

batch by checking the following equation:

c1fp(ri, S1) + c2fp(ri, S2) + · · ·+ cmfp(ri, Sm)

= b1fp(ri, E1) + b2fp(ri, E2) + · · ·+ bnfp(ri, En). (10)

This is because

c1fp(ri, S1) + c2fp(ri, S2) + · · ·+ cmfp(ri, Sm)

= fp(ri, [c1, c2, · · · , cm][S1, S2, · · · , Sm]T)

= fp

⎛
⎜⎝ri, [b1, · · · , bn]

⎡
⎢⎣
V1

...

Vn

⎤
⎥⎦[S1, · · · , Sm]T

⎞
⎟⎠

= fp

⎛
⎜⎝ri, [b1, · · · , bn]

⎡
⎢⎣
a11 · · · a1m

...
. . .

...

an1 · · · anm

⎤
⎥⎦
⎡
⎢⎣
S1

...

Sm

⎤
⎥⎦
⎞
⎟⎠

= fp(ri, [b1, b2, · · · , bn][E1, E2, · · · , En]
T)

= b1fp(ri, E1) + b2fp(ri, E2) + · · ·+ bnfp(ri, En). (11)

If Eq. (10) holds, all the fragments D1, D2, · · · , Dn are

correct. Otherwise, some of them are polluted. We can further

locate the corrupted fragments from Eq. (12) or using binary

verification [26].⎡
⎢⎣
fp(ri, E1)

...

fp(ri, En)

⎤
⎥⎦=

⎡
⎢⎣
a11 · · · a1m

...
. . .

...

an1 · · · anm

⎤
⎥⎦
⎡
⎢⎣
fp(ri, S1)

...

fp(ri, Sm)

⎤
⎥⎦ (12)

It can be seen that our fingerprinting verification approach

can not only efficiently check the integrity of multiple ag-

gregated fragments in batch, but also rapidly locate corrupted

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

5

fragments for the future data maintenance.

D. Data Maintenance

Once a fragment is identified to be incorrect, it is required to

be updated to guarantee the data availability. In this subsection,

we propose a novel data maintenance scheme to efficiently

update corrupted fragments using encoded fragments and

original data pieces. The procedure is detailed as follows:

1) Suppose that the fragment Dx stored at node x is

incorrect. For a sensor node y with listy = x, its flagy and

listy are set to 0 and NULL, respectively.

2) When n is odd, node y picks another storage node wi

with flagi = 0. In other words, node y should only choose the

storage node holding the original data block which is unique

in other storage nodes. The node y also needs to check the

integrity of Di stored at node wi according to the Subsection

C.

3) Subsequently, node wi updates the incorrect fragment

Dx. Since node wi has additional original piece Sk, and the

fragment Di = [Vi, Ei] can be expressed as:

Ei = ai1S1 + · · ·+ aikSk + · · ·+ aimSm,

Vi = [ai1, · · · , ai(k−1), aik, ai(k+1), · · · , aim], (13)

a new fragment D′
x = [V ′

x, E
′
x] can be constructed as

E′
i = ai1S1 + · · ·+ bSk + · · ·+ aimSm,

V ′
i = [ai1, · · · , ai(k−1), b, ai(k+1), · · · , aim], (14)

where b is randomly picked from F2q . In addition, we need to

set flagi = 1, f lagx = 1, listx = i, listi = x.

4) When n is even, there is no additional sensor node

with flagi = 0. Node y updates the incorrect fragment Dx

according to the Step (3).

5) Finally, nodes wi or y distribute {v, seq,D′
x, ri, Pi, Szi,

f lagx, listx}Kgr to node x and delete all the data associated

with D′
x.

E. Data Recovery

Considering the characteristics of data maintenance, we

present an optimized data recovery algorithm to reduce the

computation complexity. As shown in Algorithm 1 (line 04),

the data blocks can be easily recovered in low computational

overheads. Moreover, as the order of equations decreases,

the computational overheads of solving these equations are

significantly reduced. The complexity analysis of Algorithm 1

is given in Section IV.

F. A Concrete Example

In Fig. 3, we present a concrete example to illustrate the

proposed scheme. For simplicity, some parameters, such as

Vi, the ID of source node, seq, flag, and list, are omitted in

the example.

In the data distribution phase, the source node v generates

the original data, divides it into four pieces, and then encodes

them into five fragments {E1, E2, E3, E4, E5} using network

Algorithm 1 The Optimized Data Recovery

00 Function DataRecovery(𝑀𝑠𝑔 𝐷1, ⋅ ⋅ ⋅ , 𝐷𝑛)
01 do {
02 Result=𝑆𝑒𝑙𝑒𝑐𝑡();

// Select two fragments 𝐷𝑖 and 𝐷𝑗 , which have
// just one different coefficient. Assume that
// 𝐸𝑖 = 𝑎𝑖1𝑆1 + ⋅ ⋅ ⋅+ 𝑎𝑖𝑘𝑆𝑘 + ⋅ ⋅ ⋅+ 𝑎𝑖𝑚𝑆𝑚 and
// 𝐸𝑗 = 𝑎𝑖1𝑆1 + ⋅ ⋅ ⋅+ 𝑏𝑆𝑘 + ⋅ ⋅ ⋅+ 𝑎𝑖𝑚𝑆𝑚

03 if (Result==TRUE) {
04 Get 𝑆𝑘 = (𝐸𝑖 − 𝐸𝑗)/(𝑎𝑖𝑘 − 𝑏);
05 count++;
06 Delete 𝐷𝑗 ;
07 }
08 }while(Result==TRUE)
09 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛();

// Solve (𝑛− 𝑐𝑜𝑢𝑛𝑡) linear equations
10 return (𝑀𝑠𝑔 𝑆1, ⋅ ⋅ ⋅ , 𝑆𝑚);

coding. Subsequently, these fragments are individually dis-

tributed to storage nodes with the homomorphic fingerprintings

and original pieces.

Consider node w5 wants to check the integrity of en-

coded fragments. It broadcasts a challenge {r5}Kgr to stor-

age nodes. On receiving the challenge, each node computes

the fingerprinting and responds {fp(r5, Ej)}Kgr . Once the

acknowledgements are obtained, node w5 checks Eq. (10).

Unfortunately, fragment E4 is identified to be incorrect and

should be updated for the data availability.

Another node w3 initializes the data maintenance, since only

w3 contains the original piece S4, and other original pieces

are stored twice. Node w3 constructs a new fragment with its

own GEV. Specifically, w3 chooses a random number 6 as the

coefficient of S4 and then generates an alternative fragment

E6.

When a data collector needs to retrieve the source data,

it has to collect four fragments. If E3 and E6 are both

obtained, the data collector can quickly obtain the original data

piece S4. Subsequently, the data collector can use fragments

{E1, E2, E5} to recover other original pieces using Gaussian

eliminations. Note that the more times the data maintenance is

performed, the more efficiently the data collector reconstructs

the original data.

In summary, the proposed scheme provides a lightweight

and efficient distributed sensor data storage with integrity

and availability guarantees by exploiting network coding and

homomorphic fingerprinting.

IV. PERFORMANCE AND SECURITY ANALYSIS

In this section, we present the performance evaluations

and security analysis of the proposed scheme in terms of

the recoverable probability, data integrity, data availability,

communication overhead, computation cost, etc.

A. Recoverable Probability

During the data maintenance, a new fragment is generated

to replace the incorrect one. Although the data maintenance

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

6

Fig. 3. An instance of distributed sensor data storage

scheme is performed, we should recover the source data with

the new GEM G. In the following, we analyze the recoverable

probability, which is defined as the probability that source data

blocks can be reconstructed with the GEM G, to demonstrate

the feasibility of the proposed scheme.

[Theorem 1] For the one-time data maintenance that only

one fragment is maintained, the recoverable probability be-

comes

P (G) =
Cm

n−2 + 2Cm−1
n−1 + Cm−2

n−2 pm−1

Cm
n−2 + 2Cm−1

n−1 + Cm−2
n−2

pm

where pm = (1q)
m(m+1)

2

∏m
i=1(q

i − 1).

[Proof] Without loss of generality, let the fragment Dn be

updated by Dn−1 during the data maintenance, and the new

GEM G can be denoted as

G=

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m
...

...
. . .

...

a(n−1)1 a(n−1)2 · · · a(n−1)m

an1 an2 · · · b

⎤
⎥⎥⎥⎦=

⎡
⎢⎢⎢⎣

a1
...

an−1

an

⎤
⎥⎥⎥⎦ . (15)

Let P (G) be the recoverable probability, then we have

P (G) =
Cm

n−2P (A) + 2Cm−1
n−1 P (B) + Cm−2

n−2 P (C)

Cm
n−2 + 2Cm−1

n−1 + Cm−2
n−2

. (16)

In Eq. (16), A is a matrix with m vectors randomly picked

from {a1, a2, · · · , an−2}. B is composed of (m− 1) vectors

randomly selected from {a1, a2, · · · , an−2} and one vector

selected from {an−1, an}. C is a matrix with vectors {an−1,
an} and the other (m − 2) vectors randomly selected from

{a1, a2, · · · , an−2}. Thus, the invertible probability of these

three matrixes can be respectively considered as follows:

Case 1: For matrix A, all the elements are randomly selected

from GF (q) (In this section, GF (q) denotes F2q′ , where q =
2q

′
). Consider column i of the transposed matrix AT as the

image of the i-th basis vector in GFm(q). For the first column,

we may choose any non-zero vector in GFm(q), meaning

that there are qm − 1 choices for the first column. For the

second column, we may choose any vector that is not in the

1-dimensional subspace spanned by the first column. Since q
elements exist in the subspace, there are qm − q choices. By

induction, the number of possible invertible matrix is

(qm−1)(qm−q) · · · (qm−qm−1) = q
m(m−1)

2

m∏
i=1

(qi−1). (17)

Therefore, the invertible probability of A is

P (A) = pm =

(
1

q

)m(m+1)
2

m∏
i=1

(qi − 1). (18)

Case 2: Since all the elements of matrix B are randomly

selected from GF (q), this case is similar to Case 1, and we

can have P (A) = P (B).

Case 3: For the invertible probability of matrix C, the

calculation method is similar to Case 1. Let the last column

be spanned by the former (m− 1) columns, i.e.,

x1c1
T + x2c2

T + · · ·+ xm−1cm−1
T = cm

T . (19)

Considering the first (m−1) elements of each vector, we have

x1

⎡
⎢⎢⎢⎣

c11
c12

...

c1(m−1)

⎤
⎥⎥⎥⎦+· · ·+(xm−1 − 1)

⎡
⎢⎢⎢⎣

c(m−1)1

c(m−1)2

...

c(m−1)(m−1)

⎤
⎥⎥⎥⎦=0. (20)

If the vectors in Eq. (20) are linear independent, there is only

one choice for cm
T spanned by the vectors {c1T , c2T , · · · ,

cm−1
T }. Otherwise, the number of possible cm

T is q. Then,

the average number of possible cm
T is

E(N) = pm−1 × 1 + (1− pm−1)× q, (21)

where pm−1 is the probability that vectors in Eq. (20) are

linear independent. Thus, the number of possible invertible

CT is

(qm − 1) · · · (qm − qm−2)(q − E(N))

= q
(m−2)(m−1)

2 (q − E(N))
m∏
i=2

(qi − 1). (22)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

7

TABLE II
THE NUMERICAL RESULTS OF INVERTIBLE PROBABILITY

q = 28 (one byte) q = 216 (two bytes) q = 224 (three bytes) q = 232 (four bytes) q = 240 (five bytes)

m = 4 0.995667 0.999983 1.000000 1.000000 1.000000
m = 5 0.995487 0.999982 1.000000 1.000000 1.000000
m = 6 0.995297 0.999982 1.000000 1.000000 1.000000
m = 7 0.995136 0.999981 1.000000 1.000000 1.000000
m = 8 0.994996 0.999981 1.000000 1.000000 1.000000

Then, we can get

P (C) =

(
1

q

)m(m+1)
2

(q − E(N))
m∏
i=2

(qi − 1). (23)

In addition, the relationship among P (A), P (B), and P (C)
is

P (C) =
q − E(N)

q − 1
P (A) = pm−1P (A). (24)

Thus, the recoverable probability is

P (G) =
Cm

n−2 + 2Cm−1
n−1 + Cm−2

n−2 pm−1

Cm
n−2 + 2Cm−1

n−1 + Cm−2
n−2

pm,

where pm = (1q)
m(m+1)

2

∏m
i=1(q

i − 1).
We present the numerical results of Theorem 1 in Table

II. The following results are achieved with the parameter

setting n = 10. It can be seen that the recoverable probability

is almost not impacted by the data maintenance. Moreover,

recoverable probability is an increase function of q and a

decrease function of m.

Though Theorem 1 demonstrates that the data maintenance

has little impact on the recoverable probability, we still con-

sider the worst case that data maintenance is performed for

infinite times and have the following corollary.

[Corollary 1] For the data maintenance performed for

infinite times, the recoverable probability satisfies{
P (G) > W1(

n
2 ,m)/q

n(m+1)
2 n is even,

P (G) > W2(
n+1
2 ,m)/q

(n+1)(m+1)
2 −1 Otherwise.

where W1(x, y) =
∏x

i=1 W1(1, y − x + i)C
i−1
x−1

∏x
i=1

∏x−i
j=0

Q(i, i + j + y − x)C
j
x−i , Q(x, y) = (qy − q2x−2)(qy−1 −

q2x−2)(q− 1)q1−xy , W2(x, y) = W1(x− 1, y)(qy − q2(x−1)),
W1(1, y) = (qy − 1)(q − 1), and W2(1, y) = (qy − 1).

[Proof] In the worst scenario, matrix M has the maximal

number of paired vectors, among which each pair has only

one different coefficient. The recoverable probability satisfies

P (G) > P (M) =
W

Enumeration of M
, (25)

where W is the enumeration of invertible M . In the following,

we focus on calculating W . From Theorem 1, we have the

recurrence relation

Wn(m) = Wn−1(m){q − [Wn−1(m− 1)q−
mn−2

2 +

(1−Wn−1(m− 1)q−
mn−2

2)q]}, (26)

where n is even and denotes the number of vectors in the

invertible M , and m denotes the dimension of vectors. In ad-

dition, we have Wn−1(m−1) = Wn−2(m−1)(qm−2−qn−2).
Thus, we can further get

Wn(m) = Wn−2(m)Wn−2(m− 1)×
(qm−2 − qn−2)(q − 1)q

mn−2
2 . (27)

This recurrence relation can also be denoted as

W1(x, y) = W1(x− 1, y)W1(x− 1, y − 1)Q(x, y), (28)

where x = n/2 and y = m. By deduction, we have

W1(x, y)=
x∏

i=1

W1(1, y−x+i)C
i−1
x−1

x∏
i=1

x−i∏
j=0

Q(i, i+j+y−x)C
j
x−i

where Q(x, y) = (qy − q2x−2)(qy−1 − q2x−2)(q − 1)q1−xy .

When n is odd, we can similarly get

W2(x, y) = W1(x− 1, y)(qy − q2(x−1)).

In the following, we also evaluate the proposed data

maintenance scheme using the commutation system toolkit

of Matlab. We analyze the recoverable probability with the

increasing frequency of data maintenance. In each experiment,

we perform 5000 trails, and the presented results are the

average of these 5000 trails. In experiment 1, we study the

recoverable probability with different finite field sizes and

data maintenance times. From Fig. 4, we can see that the

recoverable probability decreases with the increase of data

maintenance times and approaches to a constant. However, the

recoverable probability is still high when data maintenance

is performed for infinite times. Moreover, the recoverable

probability is high with small finite field size. When the size

of finite field is q = 28, we can reconstruct the source data

with probability one. In the second experiment, we study the

impacts of parameter n on the recoverable probability. From

Fig. 5 and Fig. 6, we can see P (G) = 1 with small n.

Although the increase of n positively impacts the invertible

probability, we do not need to set large n to achieve high

recoverable probability, which also enhances the scalability

of the proposed scheme. Therefore, the proposed scheme is

practical and scalable in terms of data maintenance.

B. Data Availability

This subsection compares the proposed scheme with some

influential works in terms of the data availability. We define

the data availability Ava as the probability that the original

data can be accessible to authorized data collectors, i.e.,

Ava = Pr{The original data can be accessible}.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

8

Fig. 4. The P (G) with different field sizes
and repair times

Fig. 5. The P (G) with different repair times
and m = 10

Fig. 6. The P (G) with different repair times
and m = 15

In [1], (m,n)-erasure codes and algebraic signature are

applied to the data dispersion and integrity assurance, respec-

tively. In this scheme, the availability can be denoted as:

Ava0 =
n∑

i=m

Ci
n(1− patt)

ipn−i
att , (29)

where patt is the probability of node failures caused by

Byzantine failures and node compromising attacks. In the

hybrid strategy [4], erasure codes are used to encode and

distribute fragments, and the original data is maintained by

a storage node; thus, the availability can be computed as

Ava1 = (1− patt) + patt(
n∑

i=m

Ci
n(1− patt)

ipn−i
att). (30)

In our scheme, the data availability is a constant, i.e., Ava2 =
1, because corrupted fragments can always be updated from

correct ones and source data pieces.
Fig. 7 shows the numerical results of these schemes with

parameter settings: m = 10 and n = 7. The data availabilities

of erasure codes [1] and the hybrid strategy [4] decrease as the

probability of node failures increases. In addition, the hybrid

strategy has better performance than erasure codes [1] due to

the maintenance of the original data at a storage node. From

Fig. 7, it is fair to say that our scheme outperforms the other

two counterparts in terms of the data availability.

C. Data Integrity
In the proposed scheme, the data integrity is assured by

homomorphic fingerprintings which can efficiently filter in-

correct fragments with high probability. However, corrupted

fragments may still pass fingerprinting verifications in the

extreme situations defined as false negative. In this subsection,

we analyze the probability of false negative.
Two cases lead to the false negative. The fingerprinting

of the corrupted fragment may be identical with that of

correct one. Furthermore, although the fingerprintings of cor-

rupted fragments are changed, the expression b1fp(ri, E1) +
b2fp(ri, E2) + · · ·+ bnfp(ri, En) may still remain the same.

Thus, we denote the probability of false negative as Pr =
Pr1 + Pr2, where Pr1 and Pr2 denote the probability of

false negative in the above cases, respectively.
Case 1: Let the number of compromised storage node be

nc. Similar to [1], the probability of false negative can be

denoted as

Pr1 =

∑nc

i=1 C
i
nc
εi∑nc

i=1 C
i
nc

=
(1 + ε)nc − 1

2nc − 1
, (31)

where ε is the probability that fingerprintings of two different

fragments collide, and ε ≈ δ/2qγ for finite field F2q .

Case 2: In this case, the fingerprintings of corrupted

fragments are changed, however, the right hand of equal

mark in Eq. (10) still remains the same. During the integrity

verification, we randomly choose a vector [b1, b2, · · · , bn] and

check Eq. (10). In addition, the probability of false negative

decreases with the increase of checking times. Let the number

of checking be nv . If nv ≥ nc, the false negative will never

happen. Otherwise, the probability of false negative is about

Pr2 = (1− Pr1)

nc∑
i=nv+1

Ci
nc

· (2q)2i−nv

C2
nc

+ · · ·+ Cnc
nc

. (32)

D. Communication Overhead

This subsection analyzes the communication overhead of

the proposed scheme. We assume that ID and seq are

denoted with 1 byte. In addition, we also ignore the in-

fluence of encryption on the size of plaintext, which de-

pends on particular encryption algorithms [1]. In our scheme,

the communication overheads of data distribution, integrity

checking, and data maintenance can be denoted as Bwd =
Size(Di) + Size(Si) + Size(Pi) + Size(ri) + 3, Bwic =
2 + Size(ri) + (n − 1)(2 + Size(fp(ri, Ej)) + Size(Vj)),
and Bwm = Bwd, respectively. In practice, the overheads of

encoding coefficients and the constants can be omitted [21],

[22]. Then, the communication overheads can be simplified

to Bwd ≈ Size(Di) + Size(Si) +m · Size(fp(ri, Sj)) and

Bwic ≈ Size(ri) + (n − 1)(Size(fp(ri, Ej))). The main

parts of communication overheads are Size(Di), Size(Si),
Size(ri), and Size(fp(ri, Ej). For the latter two elements,

Size(fp(ri, Ej) = γ � Size(Si) and Size(ri) � Size(Si)
according to the definition in Section II. The former two

elements approximately equal to 1/m of the original data

size, which is acceptable in the resource-constrained WSNs.

Therefore, our scheme is feasible for WSNs in terms of

communication overheads.

In Wang et al.’s scheme [1], the communication overheads

of data distribution and dynamic integrity verification can

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

9

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Pr

0.2

0.4

0.6

0.8

Ava

Our Scheme

Hybrid Strategy �4�

Erasure Codes �1�

Fig. 7. The comparison of data availability

be separately denoted as Bw′
d ≈ Size(Si) + Size(P ′

i) ≈
2Size(Si) and Bw′

ic ≈ (n− 1)ν(nSize(P ′
i)), where ν is the

number of checking for each dynamic integrity verification.

Compared with Wang et al.’s scheme, our scheme has the

comparative communication overheads in the data distribution

and integrity checking.

E. Computation Cost

As a critical component of the proposed scheme, homo-

morphic fingerprintings can be computed with add operations

and table lookups, contributing little computational overhead

to sensor nodes. In [8], homomorphic fingerprintings gain

4x throughputs per second, compared with Gladman’s im-

plementation of SHA-1. This improvement is achieved by

sacrificing the memory usage which is not a primary concern

in sensor data storage. Therefore, homomorphic fingerprinting

is efficient and lightweight.

We also present the total computational overheads of the

proposed scheme. The notations of cryptographic operations

are summarized in Table III. In the data distribution, the source

node requires a hashing and a symmetric-key encryption, and

it also computes the encoded fragments and homomorphic fin-

gerprintings. Thus, the computation cost at the source node is

Hash1+SymEncr2+FPopm+NCopnm, and the computation

cost at each storage node is SymDecr1. In the dynamic in-

tegrity checking, the verifier requires encrypting the challenge,

decrypting the responses, and checking whether Eq. (10) is

satisfied. Each storage node needs to generate the fingerprint-

ing. Consequently, the computational overheads at the verifier

and each storage node are separately SymEncr1+IntCh1+
SymDecrn−1 and FPop1+SymEncr1+SymDecr1. For the

data maintenance, the computational overhead for the involved

node is SymEncr1 or SymDecr1.

F. Complexity Analysis of Algorithm 1

In this subsection, we evaluate Algorithm 1 from the aspect

of computation complexity, since this algorithm does not

require much additional memory and the analysis of space

complexity is neglected in this paper. For the computation,

the entire algorithm can be divided into two parts. The first

part (line 01-08) is to find pairwise vectors and to compute the

TABLE III
THE NOTATIONS OF CRYPTOGRAPHIC OPERATIONS

Notations Explanations

Hasht t hash operations
SymEncrt t symmetric-key encryption operations
SymDecrt t symmetric-key decryption operations
FPopt t fingerprinting generations
NCopnm Encoding m blocks into n fragments using NC
IntCht t checkings of Eq. (10)

corresponding original data pieces. The computation complex-

ity is O(m(n2−n)/2) in terms of comparison operations. The

computation cost of this part can be neglected, comparing with

multiplication operations in the second part. The second part

(line 09) is to get other source data pieces by solving linear

equations, and the computation complexity is O(C
m−n/2
n/2 (m−

n/2)3) in terms of multiplication operations. Algorithm 1

reduces many computation costs, comparing to the traditional

data reconstruction algorithm with the computation complexity

of O(Cm
n m3). Therefore, Algorithm 1 is efficient and scalable.

G. Scalability

We discuss the scalability of the proposed scheme in this

subsection. In terms of performance, data maintenance has

almost no impact on the recoverable probability, and we

can always reconstruct the source data blocks after the data

maintenance. In addition, this performance can be achieved

without large n (m ≤ n ≤ 2m). In terms of costs, both the

computation costs and communication overheads are accept-

able for the resource-constraint WSNs. Moreover, the com-

putation complexity of Algorithm 1 is drastically reduced by

the proposed scheme. Finally, each source data only involves

n storage nodes instead of the total storage nodes, thus it

is much scalable to the large-scale networks. Therefore, the

proposed scheme satisfies the requirement of scalability for

the distributed sensor data storage networks.

H. Comparisons with Other Schemes

We compare our scheme with other impressive works

qualitatively, as shown in TABLE IV. The schemes in [2],

[4], [26] provides various techniques (e.g., erasure codes

and regenerating codes) in data distribution to optimize the

performance such as memory usage, repair bandwidth, etc.

However, the data availability and integrity guarantees are

not included. Wang et al. use erasure codes and algebraic

signature to provide lightweight integrity assurance in [1].

Compared with these schemes, our scheme provides a dis-

tributed fault/intrusion-tolerant sensor data storage with both

data availability assurance and integrity guarantee.

V. RELATED WORK

Efficient data distribution has been extensively studied in

the recent years. Erasure codes (e.g., Reed-Solomon codes

[10]) are widely applied to distributed data storage in P2P and

WSNs, since erasure codes can achieve much higher reliability

compared to the replication scheme with the same number of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

10

storage nodes [1]. Fountain codes, such as LT codes [7] and

Tornado codes [32], can efficiently reduce the computation

costs of encoding and decoding. Kamra et al. [5] propose

growth codes to increase the data persistence in WSNs, so

that the sensed data is more likely to reach the sink node.

Lin et al. [11] propose an efficient distributed storage scheme

for WSNs. In this scheme, priority random linear codes are

introduced to have different data in different priorities, making

critical data have higher opportunity to survive node failures

than the data of less importance.

In addition, many literatures focus on securing data distri-

bution. Yu et al. propose a RSA-based homomorphic signature

scheme to provide the integrity guarantee for network coding

[26]. However, Yun et al. demonstrate that Yu et al.’s scheme

does not satisfy the required homomorphic property in [33].

Some schemes (e.g., the homomorphic hashing scheme, the

MAC-based scheme, the dynamic-identity based signature

scheme, and the efficient subspace authentication [27], [28],

[29], [30]) have been proposed against pollution attacks for

network coding and erasure codes. Y. Fan et al. [34] and P.

Zhang et al. [35] propose the novel schemes to secure net-

work coding against traffic analysis attacks and eavesdropping

attacks, respectively. But these schemes can not be directly

applied to sensor data storage, since they only focus on the

integrity and privacy assurances in the data distribution, not

including the data availability guarantee.

In distributed data storage networks, the data maintenance

is also a critical topic. Rodrigues et al. [4] compare the tra-

ditional data replication with erasure codes in the bandwidth-

reliability tradeoff space and propose a hybrid scheme which

can efficiently update corrupted data blocks with less band-

width requirements. Dimakis et al. [3] theoretically introduce

regenerating codes to improve the efficiency of data repair

using large fragments. Pietro et al. [13] consider the data

availability problem in sensor data storage and further propose

an efficient data management scheme. As an elegant solution

to ubiquitous data distribution and collection, Wang et al. [22]

propose the partial network coding technique to enable effi-

cient storage replacement for distributed sensor data storage.

All the schemes mainly focus on the data maintenance of

corrupted fragments or bandwidth requirements. How to detect

incorrect fragments is not addressed, meaning that the data

integrity is not guaranteed in these schemes.

Several schemes are proposed to secure distributed data

storage in WSNs [12]-[19]. Based on the polynomial-based

key management, Zhang et al. [16] present a secure data

access approach, where sinks can retrieve data following a

fixed routing. Zeng et al. [31] apply network coding and

matrix decomposition in the key pre-distribution to secure data

management in vulnerable sensor data storage networks. In

[17], the combination of XOR secret sharing and replication

are introduced to build a secure and fault-tolerant data storage

system in collaborative working environments. Wang et al. [1]

present an impressive distributed data storage scheme with the

integrity assurance in WSNs. They utilize erasure codes and

algebraic signature to achieve the integrity assurance.

In summary, sensor data storage with both data integrity

assurance and availability guarantee has been overlooked in the

existing schemes, and it is critical to consider network coding

and homomorphic fingerprinting for designing a distributed

fault/intrusion-tolerant data storage scheme in WSNs.

t

TABLE IV
THE COMPARISONS OF DISTRIBUTED DATA STORAGE SCHEMES

Ours [1] [2] [4] [8] [22]

Integrity verification
√ √ √

Error location
√

Data maintenance
√ √ √ √

Efficiency
√ √ √

VI. CONCLUSION

In this paper, we have studied the problem of data avail-

ability and integrity guarantees in distributed sensor data

storage networks. Based on networking coding and homo-

morphic fingerprintings, we have proposed a fault/intrusion-

tolerant data storage scheme for volatile WSNs environments,

aiming to provide both high data availability and integrity

assurances. Extensive theoretical analysis and simulative eval-

uations demonstrate that the proposed scheme outperforms

other counterparts.

When the rate of node failures and data corruptions becomes

extremely high, an efficient distributed error correction algo-

rithm should be designed. Moreover, we can utilize the spatial

and temporal information redundancy for data maintenance in

WSNs.

ACKNOWLEDGMENT

This work is supported by the National Grand Fundamen-

tal Research 973 Program of China (No. 2010CB328105,

No. 2011CB302703, and No. 2009CB320504), the National

Natural Science Foundation of China (No. 60932003, No.

61071065, No. 60970101, No. 60872055, No. 61020106002,

and No. 60834004), and the National Natural Science Foun-

dation of China A3 Program (No. 61161140320).

REFERENCES

[1] Q. Wang, K. Ren, W. Lou, and Y. Zhang, “Dependable and secure sensor
data storage with dynamic integrity and assurance,” in Proc. of IEEE
INFOCOM, 2009.

[2] A. G. Dimakis and K. Ramchandran, “Network coding for distributed
storage in wireless networks,” Networked Sensing Information and Con-
trol, Signals and Communication Series, V. Saligrama, Springer Verlag,
2008.

[3] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage system,” in Proc. of IEEE
INFOCOM, 2007.

[4] R. Rodrigues and B. Liskov, “High availability in DHTs: erasure coding
vs. replication,” in Proc. of IEEE IPTPS, 2005.

[5] A. Kamra and V. Misra, “Growth codes: maximizing sensor network data
persistence,” in Proc. of ACM SIGCOMM, 2006.

[6] Y. Lin, B. Liang, and B. Li, “Data persisitence in large-scale sensor net-
works with decentralized fountain codes,” in Proc. of IEEE INFOCOM,
2007.

[7] M. Luby, “LT codes,” in Proc. of IEEE Foundations of Computer Science
(FOCS), 2002.

[8] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Verifying distributed
erasure-coded data,” in Proc. of ACM PODC, 2007.

[9] A. Z. Broder, “Some applications of Robin’s fingerprinting method,”
Sequences II: Methods in Communications, Security, and Computer
Science, pp. 143-152, 1993.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

11

[10] I. S. Reed and G. Solomon, “Rolynomial codes over certain finite fields,”
Journal of SIAM, 1960.

[11] Y. Lin, B. Liang, and B. Li, “Priority random linera codes in distributed
storage systems,” in Proc. of IEEE ICDCS, 2007.

[12] J. Girao, D. Westhoff, E. Mykletun, and T. Araki, “Tinypeds: tiny per-
sistent encrypted data storage in asynchronous wireless sensor networks,”
Elsevier Ad Hoc Networks, vol. 5, no. 7, pp. 1073-1089, 2007.

[13] R. D. Pietro, L. V. Mancini, C. Soriente, A. Spognardi, and G. Tsudik,
“Catch me (if you can): data survival in unattended sensor networks,” in
Proc. of IEEE PerCom, 2008.

[14] D. Ma and G. Tsudik, “Forward-secure sequential aggregate authentica-
tion,” in Proc. of IEEE Symposium on Security and Privacy, 2007.

[15] S. Chessa, R. D. Pietro, and P. Maestrini, “Dependable and secure data
storage in wireless ad hoc networks: an assessment of DS2,” in Proc. of
WONS, 2004.

[16] W. Zhang, H. Song, S. Zhu, and G. Cao, “Least privilege and privilege
deprivation: towards tolerating mobile sink compromises in wireless
sensor networks,” in Proc. of ACM MOBIHOC, 2005.

[17] A. Subbiah and D. M. Blough, “An approach for fault tolerant and
secure data storage in collaborative work environments,” in Proc. of 2005
International Workshop on Storage Security and Survivability, 2005.

[18] N. Subramanian, C. Yang, and W. Zhang, “Securing distributed data
storage and retrieval in sensor networks,” in Proc. of IEEE PerCom, 2007.

[19] M. O. Rabin, “Efficient dispersal of information for security, load
balancing, and fault tolerance,” Journal of the ACM, vol. 36, no. 2, pp.
335-348, 1989.

[20] C. Fragouli, J. Y. Boudec, and J. Widmer, “Network coding: an instant
primer,” ACM SIGCOMM Communication Review, 2008.

[21] P. A. Chou and Y. Wu, “Network coding for the Internet and wireless
networks,” IEEE Signal Processing Magazine, 2007.

[22] D. Wang, Q. Zhang, and J. Liu, “Partial network coding: theory and
application for continuous sensor data collection,” in Proc. of IEEE
IWQoS, 2006.

[23] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. on Information Theory, vol. 46, no. 4, pp. 1204-1216,
2000.

[24] Z. Li, B. Li, and L. C. Lau, “On achieving maximum multicast
throughput in undirected networks,” IEEE Trans. on Information Theory,
vol. 52, no. 6, pp. 2467-2485, 2006.

[25] Y. Wu, P. Chou, and S. Kung, “Minimum-energy multicast in mobile ad
hoc networks using network coding,” IEEE Trans. on Communications,
vol. 53, no. 11, pp. 1906-1918, 2005.

[26] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient signature-based
scheme for securing network coding against pollution attacks,” in Proc.
of IEEE INFOCOM, 2008.

[27] Z. Yu, Y. Wei, B. Ramkumar, and Y. Guan, “An efficient scheme for
securing xor network coding against pollution attacks,” in Proc. of IEEE
INFOCOM, 2009.

[28] S. Agrawal and D. Boneh, “Homomorphic MACs: MAC-based integrity
for network coding,” Springer LNCS, 2009.

[29] P. Zhang, Y. Jiang, C. Lin, H. Yao, A. Wasef, and X. Shen, “Padding
for Orthogonality: efficient subspace authentication for network coding,”
in Proc. of IEEE INFOCOM, 2011.

[30] Y. Jiang, H. Zhu, M. Shi, X. Shen, and C. Lin, “An efficient dynamic-
identity based signature scheme for secure network coding,” Elsevier Ad
Hoc Networks, vol. 54, no. 1, pp. 28-40, 2010.

[31] R. Zeng, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “A scalable and robust
key pre-distribution scheme with network coding for sensor data storage
networks,” ELSEVIER Computer Networks, vol. 55, no. 10, pp. 2534-
2544, 2011

[32] M. Luby, M. Mizenmacher, M. A. Ahokrollahi, and D. Spielman,
“Efficient erasure correcting codes,” IEEE Trans. on Informantion Theory,
vol. 47, pp. 569-584, 2001.

[33] A. Yun, J. Cheon, and Y. Kim, “On homomorphic signatures for network
coding,” IEEE Transaction on Computers, vol. 59, no. 9, pp. 1295-1296,
2010.

[34] Y. Fan, Y. Jiang, H. Zhu, and X. Shen, “An efficient privacy-preserving
scheme against traffic analysis attacks in network coding,” in Proc. of
IEEE INFOCOM, 2009.

[35] P. Zhang, Y. Jiang, C. Lin, Y. Fan, and X. Shen, “P-Coding: secure net-
work coding against eavesdropping attacks,” in Proc. of IEEE INFOCOM,
2010.

Rongfei Zeng received a B.S. degree (2002) from
Northeastern University (China) in computer science
and technology. Currently, he is a Ph.D. candidate at
Computer Science Department, Tsinghua University,
China. His current research interests include wire-
less network security, smart grid, and performance
evaluations.

Yixin Jiang is an associate professor in Tsinghua
University. In 2007-2009, he was a Post Doctorial
Fellow with University of Waterloo. He received
the Ph.D. degree (2006) from Department of Com-
puter Science and Technology, Tsinghua University,
China. In 2005, he was a Visiting Scholar with the
Department of Computer Sciences, Hong Kong Bap-
tist University. In 2009, he was a Visiting Scholar
with the Department of Computer Science and En-
gineering, the Chinese University of Hong Kong.
He has served as the Technical Program Committee

(TPC) member for main network conferences, such as IEEE ICCCN, IEEE
GLOBECOM, IEEE ICC, IEEE WCNC, etc. He is a member of IEEE CISTC.
His current research interests include network coding, clouding computing,
security and privacy in wireless communication and mobile computing. He
has received Excellent Backbone Talents Fund Award, Outstanding Doctoral
Graduate Award, and Excellent Doctoral Thesis Award of Tsinghua University.

Chuang Lin (IEEE SM’04) is a professor of the
Department of Computer Science and Technology,
Tsinghua University, Beijing, China. He received
the Ph.D. degree in Computer Science from the
Tsinghua University in 1994. His current research
interests include computer networks, performance
evaluation, network security analysis, and Petri net
theory and its applications. He has published more
than 300 papers in research journals and IEEE con-
ference proceedings in these areas and has published
three books. Professor Lin is a member of ACM

Council, a senior member of the IEEE and the Chinese Delegate in TC6 of
IFIP. He serves as the Technical Program Vice Chair, the 10th IEEE Workshop
on Future Trends of Distributed Computing Systems (FTDCS 2004); the
General Chair, ACM SIGCOMM Asia workshop 2005; the Associate Editor,
IEEE Transactions on Vehicular Technology; the Area Editor, Journal of
Computer Networks; and the Area Editor, Journal of Parallel and Distributed
Computing.

Yanfei Fan received the M.Eng. degree (2005)
from Tsinghua University, China, and the B.Eng.
degree (2002) from Beijing University of Posts and
Telecommunications, China, all in Computer Sci-
ence. He is currently pursuing his Ph.D. degree in the
Department of Electrical and Computer Engineering
at University of Waterloo, Canada. His research
interests include network coding, security in wireless
communication and mobile computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

www.manaraa.com

12

Xuemin (Sherman) Shen (IEEE M’97-SM’02-
F’09) received the B.Sc. (1982) degree from Dalian
Maritime University (China) and the M.Sc. (1987)
and Ph.D. degrees (1990) from Rutgers University,
New Jersey (USA), all in electrical engineering. He
is a University Research Chair Professor, Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Waterloo, Canada. His research focuses on
mobility and resource management in interconnected
wireless/wired networks, UWB wireless communi-
cations networks, wireless network security, wireless

body area networks and vehicular ad hoc and sensor networks. He is a co-
author of three books, and has published more than 400 papers and book
chapters in wireless communications and networks, control and filtering. He
is a Distinguished Lecturer of IEEE Communications Society. He serves as the
Tutorial Chair for IEEE ICC’08, the Technical Program Committee Chair for
IEEE Globecom’07, the General Co-Chair for Chinacom’07 and QShine’06,
the Founding Chair for IEEE Communications Society Technical Committee
on P2P Communications and Networking. He also serves as a Founding
Area Editor for IEEE Transactions on Wireless Communications; Editor-
in-Chief for Peer-to-Peer Networking and Application; Associate Editor for
IEEE Transactions on Vehicular Technology; KICS/IEEE Journal of Commu-
nications and Networks, Computer Networks; ACM/Wireless Networks; and
Wireless Communications and Mobile Computing (Wiley), etc. He has also
served as Guest Editor for IEEE JSAC, IEEE Wireless Communications, IEEE
Communications Magazine, and ACM Mobile Networks and Applications,
etc. He received the Excellent Graduate Supervision Award in 2006, and the
Outstanding Performance Award in 2004 and 2008 from the University of
Waterloo, the Premier’s Research Excellence Award (PREA) in 2003 from
the Province of Ontario, Canada, and the Distinguished Performance Award
in 2002 and 2007 from the Faculty of Engineering, University of Waterloo.
He is a registered Professional Engineer of Ontario, Canada.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

